

 Vinícius dos Santos Oliveira

Software sandboxing The basics

 Diving into the territory of software sandboxing is diving into mostly uncharted
territory. The necessary pieces to implement good sandboxing in your software
are scattered all-around and the pioneers haven’t yet gathered enough knowledge
into an unified mappa mundi that can guide new sailors through some well
understood safe routes. In this blog post I’ll offer my own share of experiences
that I have acquired while working on sandboxing support for Emilua. Writing
style will suffer a little because I’ll err on the side of repeating myself too
much to avoid any misunderstandings.

Do keep in mind that some Lua code samples here require the
unreleased Emilua 0.11 (just grab a recent commit from the repo’s development
branch).

First, let’s get some informal (but useful) definition for sandboxing just to
make sure we’re on the same page. Here’s
the
definition that was used by Julien Tinnes and Chris Evans at Hack In The Box
Malaysia 2009:

The ability to restrict a process' privileges:

	
Programmatically;

	
Without administrative authority on the machine;

	
Discretionary privilege dropping.

That’s a very good definition to keep the ball rolling. Let’s quickly iterate
over each point individually to make them crystal clear. However keep in mind
that the opinions I possess today are a little different from the
opinions J. Tinnes and C. Evans had during the 2009 talk (especially around “is
it okay to use superuser APIs?”), so my explanations will differ a little and
guide you towards what I consider better practices for 2025.

Programmatic privilege dropping

 OSes present different interfaces to users and software developers. System
administrators traditionally rely on filesystem permissions to isolate services
(UNIX daemons). If we allowed third-party programs to freely change such
permissions then it’d nullify the policies the sysadmin was trying to enforce to
begin with.

Furthermore third-party programs abstract their own virtual worlds and most of
the time UNIX filesystem permissions aren’t a good fit to model the security
policies such other virtual worlds require. Do you use UNIX permission modes to
define who can see your Twitter feed or message you on Identi.ca? Filesystem
permissions aren’t the only knobs sysadmins possess to restrict access rights,
but the reasoning developed here also apply to these other knobs.

Nonetheless a process inevitably runs on top of an OS and there are
kernel-exposed resources the process interacts with (e.g. files). It’s this
interface that matters to the software developer. Web browsers such as Firefox
run DRM plugins and it’s desirable to run such third-party plugins without
allowing them to have full access to every file that Firefox has access to
(usually every file in the user’s HOME directory). Traditional tools such as
setuidgid can’t help here and their usefulness is limited as interfaces
sysadmins turn to. setuidgid and similar tools aren’t interfaces intended for
the software developer to use.

[image: If someone steals my laptop while I’m logged in, they can read my email, take my money, and impersonate me to my friends, but at least they can’t install drivers without my permission.]

Figure 1. XKCD 1200: Authorization

For programmatic privilege dropping, traditional UNIX interfaces are a poor
match, and OSes where this gap actually matters will provide extended interfaces
that go beyond traditional UNIX (e.g. FreeBSD’s Capsicum and Linux’s Seccomp).

Dropping privileges without root

 When good interfaces for sandboxing weren’t available, programmers found their
way to create sandboxes anyway by abusing mechanisms available only to the
superuser. The most emblematic technique in this class is a helper suid binary
that’ll configure a chroot jail.

The obvious problem with these approaches is that they aren’t available to all
programs. Allowing any program to install suid binaries defeat any security
measures. Suid binaries equal to temporally raising privileges to full
administrative authority over the system. Privileges should only ever decrease,
never increase (principle of least privilege).

Another related concern here is to not design APIs that backfire by
exponentially increasing the kernel attack surface. The Docker boom popularized
Linux namespaces as a mechanism to cheaply isolate services. However within a
nested user namespace, the process runs as superuser (within that namespace),
and code paths within the kernel that would normally only be available to the
superuser are now available to every user. We have over a decade of kernel code
that was never written with this premise in mind. This decision caused security
problems in the past, and it’s bound to happen again. To quote Andy Lutomirski:

I consider the ability to use CLONE_NEWUSER to acquire CAP_NET_ADMIN over
any network namespace and to thus access the network configuration API to be a
huge risk. For example, unprivileged users can program iptables. I’ll eat my hat
if there are no privilege escalations in there.

~ Andy Lutomirski https://lore.kernel.org/all/CALCETrWYRvqhyCwx5RX6L3TEYCfW0j6ThFUc+ASL7BpxgO5dEQ@mail.gmail.com/

It’s fine to allow user namespaces as long as you restrict this interface to
trusted containerization tools (e.g. Docker). However Linux namespaces is a
terrible interface for software sandboxing. Newer sandboxing interfaces in Linux
such as Landlock were carefully designed to not exponentially increase the
kernel attack surface as to avoid the disasters we’ve seen with Linux’s user
namespaces. Moreover new ways to restrict
namespaces within Linux are still being developed and long-term it’s a bad bet
to rely on them as a general sandboxing mechanism.

The first few years of software sandboxing research I’ve put into Emilua were
solely focused on Linux namespaces. After a lot of frustration the focus shifted
towards different solutions. Nowadays Emilua still offers support for Linux
namespaces, but the intended use-case now is the creation of containerization
tools. For proper sandboxing within Emilua, you’ll use mechanisms other than
Linux namespaces.

Discretionary privilege dropping

 Actually sandboxes might also be defined as:

A restricted, controlled execution environment that prevents potentially
malicious software […] from accessing any system resources except those for
which the software is authorized.

~ Committee on National Security Systems (CNSS) Glossary 2022 https://www.cnss.gov/CNSS/issuances/Instructions.cfm

There’s no actual consensus over what traits are required for some code to be
considered sandboxed and definitions are usually very loose. These definitions
don’t require the properties we’ve been discussing so far. Therefore a different
term altogether might come in handy. J. Tinnes suggested “discretionary
privilege dropping”. That’s the type of sandboxing we’ll be looking into for
this article.

Discretionary privilege dropping doesn’t replace system administration
policies. Rather they complement each other and should be adopted in tandem.

Practical sandboxing: processes

 Now we’re hopefully on the same page. Sandbox for us mean the same thing:
discretionary privilege dropping. How do we go from an unsandboxed program to a
sandboxed one on existing real-world OSes? In every mainstream OS today, the
privilege boundary lies at the process level. Credentials are associated with
each process and that’s what the kernel checks to decide whether the process can
acquire new resources using ambient authority.

Linux is actually different and associates credentials at the thread level, but
a design rooted at the thread level cannot work, and that’s why
glibc will do extra work to synchronize credentials
across threads even if the kernel is sloppy about
it. GNOME
developers thought they could work at the thread level just to be proved wrong
with CVE-2023-43641.

Adam Langley actually described a mechanism that in theory can work at the
thread level, but in practice is economically too costly and I don’t think it’ll
ever work:

So that’s what we do: each untrusted thread has a trusted helper thread running
in the same process. This certainly presents a fairly hostile environment for
the trusted code to run in. For one, it can only trust its CPU registers - all
memory must be assumed to be hostile. Since C code will spill to the stack when
needed and may pass arguments on the stack, all the code for the trusted thread
has to carefully written in assembly.

The trusted thread can receive requests to make system calls from the untrusted
thread over a socket pair, validate the system call number and perform them on
its behalf. We can stop the untrusted thread from breaking out by only using CPU
registers and by refusing to let the untrusted code manipulate the VM in unsafe
ways with mmap, mprotect etc.

~ https://www.imperialviolet.org/2009/08/26/seccomp.html

Let’s not theorize over what alternative designs could work. For today,
processes is what we got. Once we compartmentalise our program as separate
processes, we can proceed to the next steps:

	
Assigning different privileges to each compartment (the processes).

	
Handling communication among the compartments.

Researchers from FreeBSD’s Capsicum already had the right mental model to
develop sandboxes for well over a decade:

Compartmentalised application development is, of necessity, distributed
application development, with software components running in different processes
and communicating via message passing.

~ Capsicum: practical capabilities for UNIX Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway

The means to drop privileges are different on every platform, so we’ll skip this
for now and get back to it later. First let’s focus on the problem of
distributed application development.

The actor model and capability-based security

 The actor model is one of the most well known patterns for the development of
distributed systems. Erlang is perhaps its most iconic user. However Erlang’s
interest in the actor model lies in high availability and fault
tolerance. Nonetheless it’s still useful to look into widely used models even if
we’re not interested in high availability nor fault tolerance.

It’s common for many explanations of the actor model to quickly step into the
world of mathematics (which is fine). However many of them quickly become lost
into the world of abstraction and forget about computers entirely (which is not
fine). So let’s just use a summary of the points we care about in the actor
model:

	
Actors can manage their own internal state.

	
Actors can spawn other actors.

	
Actors can send messages to other actors.

	
Actors can include the addresses of other actors in messages.

If we summarize the actor model into concrete design choices within our
programming language or framework, here’s what we care about:

	
There is a function to create actors. This function returns the address of the
new actor.

	
The address of an actor can be used to send messages.

	
The address of an actor can also be a message or part of a larger message.

	
There is a function to receive messages. This function read messages that are
enqueued for the calling actor.

	
It’s possible to retrieve the address of the current actor.

	
Actors share no memory with each other.

	
An actor doesn’t run in parallel to itself. If an actor is currently running
in thread A, it can’t also be running in thread B. However it’s fine for
actors to jump from one thread to another (as in work-stealing threaded task
schedulers). That’s
the same property that Boost.Asio describe as strands.

For Emilua, this design translates into 3 functions:

 spawn_vm(module) -> actor
actor.send(msg)
inbox.receive() -> msg

If you can learn just 3 functions, you can code for the actor model. Let’s go
over some examples now:

Listing 1. Creating actors
 -- `module1.lua` will be the entry-point
-- for the execution of `new_actor1`
local new_actor1 = spawn_vm{
 module = 'module1' }

local new_actor2 = spawn_vm{
 module = 'module2' }

Listing 2. Sending messages
 new_actor1:send(1)
new_actor1:send('ping')
new_actor1:send{ arg1 = 1, arg2 = 2 }

Listing 3. Receiving messages
 local inbox = require 'inbox'

while true do
 local msg = inbox:receive()
 handle(msg)
end

Listing 4. Sending messages with addresses
 new_actor1:send{ arg1 = 1, arg2 = 2, send_result_to = new_actor2 }
new_actor1:send{ arg1 = 3, arg2 = 4, send_result_to = inbox }

If we decide to use the actor model for sandboxing, then each process will be an
actor. UNIX domain sockets can be used for actor messaging. Upon spawning a new
actor, we setup socket inheritance so we can communicate with it. The socket
will be the actor address. We also need to be able to include the addresses of
other actors in messages, but this is also covered because
it’s possible to send file
descriptors over UNIX domain sockets. The inbox file descriptor is never sent
to other actors (i.e. we have a MPSC channel).

Emilua has many implementations for the actor model, so we must explicitly
instruct it to use subprocesses upon spawning a new actor:

Listing 5. Creating IPC-based actors
 local new_actor1 = spawn_vm{
 module = 'module1', subprocess = {} }

local new_actor2 = spawn_vm{
 module = 'module2', subprocess = {} }

This design also solves another problem for our sandboxing concerns: handing
resources over to restricted processes. “Everything is a file (descriptor)” is
one of the most well known phrases within the UNIX culture. If we can send file
descriptors then we have a really broad range of resources that we can work with
from sandboxed processes. To mention just a few:

	
Files.

	
Directories.

	
Pipes.

	
Sockets.

	
Device nodes (e.g. /dev/random, GPU communication, …).

	
Shared memory (memfds).

	
Process handles — pidfds, procdescs.

	
Sync objects (e.g. eventfd).

	
eBPF programs.

These are the resources we care about when we sandbox programs. These are the
resources we’ll take into account when we develop our security models. If we can
prove that we aren’t leaking file descriptors to the wrong actors then we can
use the actor model. Fortunately there’s a well researched model that solves
this problem for us: capability-based security. There’s even a programming
language based on the actor model and capability-based security:
the Pony programming language.

There’s only one small gap that we need to fill to combine both models:
capability based security assumes unforgeable tokens, but the actor model uses
addresses (which are forgeable). In our case, this problem was already solved by
the use of channels instead of addresses. The API stays the same and nobody will
notice a thing. Now we can use capabilities to reason about questions such as:

	
Is it possible for actor A to have effective access to resource X?

	
How can we design a layout that makes it impossible for any sandboxed actor to
simultaneously have access to files and sockets?

As for the usage of file descriptors as capabilities, the rule of thumb would be
to avoid ioctls, but we’ll be back to this topic later.

The actor model is simple to use, but very powerful. The ability to include the
addresses of other actors in messages means arbitrarily variable topologies. On
most of my own projects, I restrict myself to tree topologies, but the moment a
tree becomes unfit for my project, it’ll be easily replaced by a different
topology. So far I haven’t stumbled on a single sandboxed application that can’t
be modeled using actors.

[image: chromium sandbox1]

Figure 2. Chromium Sandbox Topology Diagram

If you need guidelines on how to develop distributed applications using the
actor model, you’ll enjoy several decades of R&D that’ve gone into it. Whether
you prefer books, small tutorials, face-to-face classes, study groups, or many
other learning approaches, you’ll likely find something of use.

File descriptors as capabilities

 Now that we have messaging solved with the actor model, let’s jump into
sandboxing (security models) again. There are other properties an object must
have so it can be modeled as a capability. A capability isn’t only a reference
to a resource, but the associated access rights as well. Owning a capability is
the same as also having access rights to perform actions. With this in mind, we
need to ponder:

	
Can file descriptors be modeled as capabilities?

	
What precautions must we take to use file descriptors as capabilities?

Generally UNIX systems run permission checks to grant or deny access only when a
new file descriptor is created, not when existing file descriptors are
used. This behavior is compatible with capabilities. Here’s the code for a
sample program:

 #include <fcntl.h>
#include <stdio.h>

int main()
{
 int fd = open("/root", O_RDONLY);
 if (fd == -1) {
 perror("open");
 } else {
 printf("success\n");
 }
}

And the output when I run the program as root:

 success

And the output when I run the program as any other user:

 open: Permission denied

This is just the UNIX behavior I was mentioning. Now let’s run some shell command as root:

 # grep -Ee '^nobody:' </etc/shadow
nobody:!*:19642::::::

And the same command as a different user:

 $ grep -Ee '^nobody:' </etc/shadow
-bash: /etc/shadow: Permission denied

Nothing surprising here. It’s just the same behavior. Now let’s run grep as an
unprivileged user, but making sure it inherited a file descriptor opened by
root:

 # setpriv --reuid=1000 --regid=1000 --init-groups grep -Ee '^nobody:' </etc/shadow
nobody:!*:19642::::::

As stated earlier, UNIX systems generally don’t run permission checks when
performing actions on existing file descriptors. That’s why grep succeeded to
read the file contents in the example. This was true for the previous example
(the action read on a regular file), but will it always be true? We could be
afraid of new kernel versions. They could always introduce a new syscall that
breaks this convention. However early in UNIX history the concept of suid
binaries was introduced, and that’s a legacy that’ll keep haunting kernel
developers to make sure they don’t break this convention. Let’s explore suid
binaries now.

In the last example we had the superuser using the syscall setresuid to change
the process credentials. Now we’ll walk into the opposite direction, creating a
child privileged process from an unprivileged one. This is allowed only for suid
binaries, so the privileged process will only ever run programs trusted by the
sysadmin. One of such programs is su:

 $ setsid su </dev/null 2>&1 | cat
Password: su: Authentication token manipulation error

This example shows that we can easily trick suid binaries to read or write into
any file descriptors that we have by using simple fd inheritance. For this
example, it wrote the string “Password: su: Authentication token manipulation
error” using the credentials of a privileged process. If the credentials of the
writer process had any importance for the security of the system, every UNIX
system would be broken already. Thefefore new interfaces are always designed in
a way that the credentials of the writer process don’t matter at all.

As a recent example to further stress the point,
some of the last syscalls that Linux introduced
were related to filesystem mounting. The initial versions of the contributed
patchset were rejected due to the use of the syscall write in operations
that’d use the credentials of the calling process for permission
checks. Eventually the contributor changed the design by using the new syscall
fsconfig and the patchset was accepted.

It’s important to notice that kernel developers will respect the convention
whether suid binaries are allowed on our Linux distro or not. Even if we block
suid binaries from our OS entirely, we can still assume that no attacker will be
able to gain new privileges by using our process as a proxy to perform some
dangerous write operation (the attacker could just write into the file
descriptor directly instead and the effects would’ve been the same).

The exception to this rule are ioctls. Performing ioctls on fds received from
untrusted processes is always dangerous. Emilua relies on Boost.Asio for async
IO, and Boost.Asio used to rely on FIONBIO when it shouldn’t. After a few
email exchanges, I managed to persuade Christopher Kohlhoff to change this
behavior and
now
Boost.Asio will do the right thing as long as you’re at least on Boost 1.86.

Awesome. We can indeed model file descriptors as capabilities, but we weren’t
the first to reach this conclusion.

FreeBSD’s Capsicum

 Capsicum is an interface to better support the use of file descriptors as
capabilities that is part of FreeBSD since its 9.0 release. One of the
facilities offered by Capsicum is the function cap_enter. cap_enter drops
process privileges by disabling ambient authority entirely.

 local new_actor3 = spawn_vm{
 module = 'module3',
 subprocess = {
 -- the runtime will run this Lua
 -- code before it attempts to
 -- initialize complex libraries
 -- or acquire system resources
 init = 'C.cap_enter()'
 } }

That’s it. One function call and we dropped privileges. All system accesses will
have to be performed through open file descriptors. If we don’t already have
access to some resource, the only way to get it now is through inbox. If we
attempt to open files, open will fail because ambient authority is
disabled. If we attempt to connect a socket to some endpoint, the operation will
fail because ambient authority is disabled. That’s the beauty of Capsicum: we
deny access to external resources because the names themselves that could be
used to refer to resources become unavailable.

When
the Capsicum research was published, the following table was also presented:

Table 1. Sandboxing mechanisms employed by Chromium

	Operating system
	Model
	Line count
	Description

	Windows

	ACLs

	22350

	Windows ACLs and SIDs

	Linux

	chroot

	605

	setuid root helper sandboxes renderer

	Mac OS X

	Seatbelt

	560

	Path-based MAC sandbox

	Linux

	SELinux

	200

	Restricted sandbox type enforcement domain

	Linux

	seccomp

	11301

	seccomp and userspace syscall wrapper

	FreeBSD

	Capsicum

	100

	Capsicum sandboxing using cap_enter

At that time, its researchers have modified Chromium to make use of Capsicum and
compared how much effort was required to make use of each sandboxing mechanism
within Chromium. Capsicum required only 100 lines of code. Compare that to
seccomp’s 11301 lines or Windows' 22350 lines. The other mechanisms compared
didn’t actually restrict the sandboxes significantly and can be disregarded. If
you’re only going to study one sandboxing mechanism in your life, it should be
Capsicum. To this date, I have yet to see a better sandboxing mechanism than
Capsicum.

Capsicum also provides finer grained access control to file descriptors. As an
example, one may use Capsicum to allow one process to wait on a semaphore, but
not to post on it. A file descriptor is usually created with all rights
assigned. Then these rights can be reduced through the use of the function
cap_rights_limit.

 local unix = require 'unix'

local in_, out = unix.seqpacket.socket.pair()
out:shutdown('receive')
out = out:release() --< get file descriptor

-- deny shutdown-send so one
-- worker cannot shutdown the
-- channel to everyone
out:cap_rights_limit({'send'})

for i = 1, 20 do
 local worker = spawn_vm{
 module = 'worker',
 subprocess = {
 init = 'C.cap_enter()'} }
 worker:send(out)
end
out:close()

local buf = byte_span.new(512)
while true do
 local nread = in_:receive(buf)
 print(buf:first(nread))
end

Although open() won’t work in Capsicum mode, openat() will, and Capsicum
will make sure the relative paths are only resolved to a hierarchy beneath the
given directory-fd. I have a rough idea on how to make something similar work on
Linux by abusing many layers of workarounds, but I don’t have any code to
show yet. Stay tuned til then.

I haven’t actually
faced many problems using Capsicum so the only complaint I’ve had was fixed long
ago. There’s not much to talk about Capsicum. The system is incredibly simple
to use yet powerful. This model will be the inspiration for all sandboxes
developed in the rest of this article no matter the OS.

Non-blocking IO on UNIX: it sucks!

 Once we do receive a file descriptor from a sandbox, it’s time to operate
on it. However if we’re sloppy about it, our thread will block. We need to avoid
blocking operations to dodge some DoS
attempts. The mess around non-blocking IO on
UNIX has been long known. Believe me when I say I have my own share of comments
to make here, but this article isn’t about async IO and the text is already
getting too long, so I’ll just present a boring summary of what you need to
know:

	
close() may block according to POSIX.

	
Supposedly close() always succeed on
Linux. Don’t bother checking for errors here.

	
You
may need to create a thread to run close() if “slow-to-close” files are a
problem.

	
Use fstat on the received file descriptor to check whether it’s a socket.

	
On sockets, use MSG_DONTWAIT on recv(). Boost.Asio still gets this wrong,
but I’m short on time to send bugfixes anytime soon.

	
On non-sockets, use a proactor (completion events opposed to readiness events)
to perform IO operations (e.g. io_uring on Linux, POSIX AIO on FreeBSD, …).

	
On FreeBSD. Other
approaches will likely fail with ENOTCAPABLE. Boost.Asio also gets this
wrong, and I’m short on time to send bugfixes here too.

	
On
Linux, io_uring is widely distrusted and disabled. Therefore you might just
as well reject non-socket IO on Linux if the file descriptor was received from
a sandboxed process.

By now you should understand that there are actually two use cases:

	
Trusted process creates a resource (file descriptor) and sends it to a
distrusted sandboxed process.

	
The distrusted sandboxed process creates a resource and sends it elsewhere.

If the file descriptor was created by a trusted process then the range of
options we can work with widens. However state such as O_NONBLOCK is shared
among all copies of a file descriptor and become a problem the moment the file
descriptor reaches the first sandboxed process. On Capsicum we can at least
forbid F_SETFL and alleviate the problem slightly, but this approach only
works for FreeBSD.

Sandboxing existing code

 By now you should have enough tools in your toolbox to sandbox all your future
code. However there’s a reason why we sandbox code. Projects grow high and large
until it becomes impossible to ensure their code is… bug-free. A little bug in
just one of the dozens of modules within a project shouldn’t equal to a fully
compromised system when the bug is exploited by a hacker. Damage should be
contained. Security policies implemented by OS tools external to your code can
only work at a program (or user) level. The program will still be fully
compromised and the hacker will have access to all data and credentials the
program has access to.

When your program deals with data that can be processed independently, there’s
an opportunity to implement a safer approach. If you can run multiple instances
of your program as different users on your OS, you can use existing security
solutions in your project. However if the concept of allocating defined portions
of the data to fixed users doesn’t work for your project, you may need something
more complex or custom-tailored. When the relationships between the users are
blurry and your project demands policies that are more dynamic, you may need
sandboxes.

As a rule of thumb, every shell should have sandboxes. Shell are programs that
act as the membrane that sits between the human operator and some virtual
world. Tablets, smartphones, and laptops display graphical shells to interact
with programs, windows, and files. Servers employ textual shells. Likewise web
browsers act as the shells to the www world.

I wouldn’t be surprised if Firefox and Chrome were the only software employing
discretionary privilege dropping that you know. They are shells after all so it
matters to them. More than that, they’re very well funded projects. Sandboxing
used to be very expensive (especially outside FreeBSD). However these shouldn’t
be the only software out there with builtin sandboxing support. Take Telegram,
for instance. The right media parsing bug could mean a hacker having access to
all my chat history. What time does my son leave school? What people do I trust
my credit card info with? When will I go in a trip and leave my house
unattended? These are just a few examples of the damage that might be done due
to the lack of sandboxes in Telegram. Not only Telegram, but every instant
messenger should be employing sandboxes. Media parsing should always be
performed in dedicated sandboxes.

The first step into this direction is a realistic approach to real-world
engineering: let’s not rewrite all code from scratch. Deal? The tricks you
learned earlier will still be useful, but from now on I’ll share tricks to work
on existing real-world code. Capsicum users refer to the ability to run
unmodified code within sandboxes as oblivious sandboxing. Techniques for
oblivious sandboxing most often than not have nothing to do with discretionary
privilege dropping and can’t solve the problems we were mentioning just a
second ago. However it’s possible to combine approaches from both worlds in the
same project so it’s important to study the techniques for oblivious
sandboxing too.

The one place we need to look at to implement oblivious sandboxing is actually
pretty obvious: the ambient authority functions. In fact, that’s what projects
such as Super Capsicumizer
9000 do. They inject a dynamic library into a process using LD_PRELOAD to
interpose ambient authority calls. This technique is actually yesterday news and
projects such as fakeroot have been using it for decades.

[image: gedit sandbox etc fs8]

Figure 3. Super Capsicumizer 9000 demo: refusing to open /etc on gedit

Super Capsicumizer 9000 is actually a small experiment hacked together by a very
very small team. The experiment succeeded into opening old software built on top
of complex libraries with a long history of changes. This is very
promising. It’s a sign that maybe a single programmer working alone to interpose
just a few functions for ambient authority access will have success in running
legacy code.

Programmers almost never do syscalls directly, and instead rely on libc to do
the syscalls on their behalf. That’s why this approach works so well. All you
have to do is to write a definition for the function from libc you want to
interpose. If you’re linking against the dynamic libc, your function will be
loaded first and used instead. If you’re linking against the static libc,
chances are that the libc symbol is actually a weak symbol so it’ll be dropped
once the static linker see your definition. Emilua has been using this approach
to support dynamic and static executables on Linux and FreeBSD and so far
getaddrinfo was the only ambient authority function whose symbol lacked the
attribute for weak symbols (please comment on the linked bug reports if you plan
to build your own sandboxes using the same techniques or using Emilua):

	
https://sourceware.org/bugzilla/show_bug.cgi?id=32509.

	
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=283528.

The next step is choosing which functions to interpose. Functions from FreeBSD’s
libcasper are good first candidates. However for some reason libcasper doesn’t
interpose the functions it intends to replace so you’ll need to change names and
parameters accordingly. libcasper functions (e.g. cap_getaddrinfo) always take
an extra parameter. Another good source of inspiration to decide which functions
to interpose is the library used by Super Capsicumizer 9000: libpreopen. Most of
the time, you’ll only need to interpose a few functions even for complex
projects.

Chromium renderers need very little authority. They need access to fontconfig to
find fonts on the system and to open those font files.

~ https://www.imperialviolet.org/2009/08/26/seccomp.html

Emilua 0.11 abstracts all these details into the module libc_service. The
example below shows how we use this module to override the behavior of open to
return a rogue file descriptor when the subprocess try to open
/dev/null. Actual sandboxing setup (i.e. privilege dropping within the new
subprocess) is omitted for brevity. The example also shows how to prefill the
code cache for the new subprocess so it won’t query the filesystem to fetch the
Lua code to execute.

 local libc_service = require 'libc_service'
local stream = require 'stream'
local pipe = require 'pipe'
local fs = require 'filesystem'

local master, slave = libc_service.new()

slave.open = [[
local real_open, path, flag, mode = ...
local res, errno, fd = real_open(path, flag, mode)
if fd then
 return fd
else
 return res, errno
end
]]

local source_tree_cache = {}
source_tree_cache['a.lua'] = [[
local stream = require 'stream'
local file = require 'file'
local fs = require 'filesystem'

local f = file.stream.new()
f:open(fs.path.new('/dev/null'), {'read_only'})
f = stream.scanner.new{ stream = f }
print(f:get_line())
]]

spawn_vm{
 module = fs.path.new('/a.lua'),
 subprocess = {
 source_tree_cache = source_tree_cache,
 libc_service = slave,
 stdout = 'share',
 stderr = 'share',
 }
}

spawn(function() pcall(function()
 while true do
 master:receive()
 if master.function_ ~= 'open' then
 master:use_slave_credentials()
 goto continue
 end
 local p, f, m = master:arguments()
 if p ~= fs.path.new('/dev/null') then
 master:use_slave_credentials()
 goto continue
 end

 local pi, po = pipe.pair()
 pi = pi:release()
 spawn(function()
 stream.write_all(po, '/dev/null contents\n')
 po:close()
 end):detach()
 master:send_with_fds(-2, {pi})
 ::continue::
 end
end) end):detach()

Emilua uses UNIX sockets behind the scenes for communication between both
processes. This approach allows one to implement fully dynamic security
policies. For instance, if you’re trying use Telegram’s tdlib to implement your
own Telegram client, you could have the following rules for your secutiry
policy:

	
Only resolve name queries to pluto.web.telegram.org.

	
Only allow connect requests to the IP addresses we resolved in previous steps.

The little Lua script we send to be executed in the sandboxed side means we can
apply some simple call fixups at the call site to further broaden the use cases
we can tackle. For instance, when sandboxed code try to open a GUI connecting to
/tmp/.X11-unix/X0, we can send a new file descriptor to an unrelated display
server and replace the socket from the original request with the new one using
dup2 from the Lua script at the call site. In fact, we can do that:

 local libc_service = require 'libc_service'
local stream = require 'stream'
local system = require 'system'
local pipe = require 'pipe'
local unix = require 'unix'
local fs = require 'filesystem'

local preload_libc_path
do
 local pi, po = pipe.pair()
 po = po:release()
 pi = stream.scanner.new{ stream = pi }

 system.spawn{
 program = 'pkg-config',
 arguments = {'pkg-config', '--variable=libpath', 'emilua_preload_libc'},
 environment = system.environment,
 stdout = po,
 }
 po:close()

 preload_libc_path = tostring(pi:get_line())
end

local xephyrconnep
for i = 1, 20 do
 local pi, po = pipe.pair()
 po = po:release()
 pi = stream.scanner.new{ stream = pi }

 local xephyr = system.spawn{
 program = 'Xephyr',
 arguments = { 'Xephyr', ':' .. i, '-displayfd', '3' },
 environment = system.environment,
 extra_fds = {
 [3] = po,
 },
 }
 po:close()

 if pcall(function()
 local nr = tostring(pi:get_line())
 xephyrconnep = '/tmp/.X11-unix/X' .. nr
 return true
 end) then
 break
 end
end
if not xephyrconnep then
 print('Failed to start Xephyr')
 system.exit(1)
end

local master, slave = libc_service.new()

slave.connect_unix = [[
local real_connect, fd, path = ...
local res, errno, fd2 = real_connect(fd, path)
if fd2 then
 C.dup2(fd2, fd)
 C.close(fd2)
end
return res, errno
]]

local guiappenv = system.environment
guiappenv.DISPLAY = ':0'
guiappenv.LD_PRELOAD = preload_libc_path
guiappenv.EMILUA_LIBC_SERVICE_FD = '3'
local guiapp = system.spawn{
 program = 'xterm',
 arguments = { 'xterm' },
 environment = guiappenv,
 stdout = 'share',
 stderr = 'share',
 extra_fds = {
 [3] = slave,
 },
}
scope_cleanup_push(function() guiapp:wait() end)

spawn(function() pcall(function()
 while true do
 master:receive()
 if
 master.function_ == 'connect_unix' and
 (
 master:arguments() == fs.path.new('\0/tmp/.X11-unix/X0') or
 master:arguments() == fs.path.new('/tmp/.X11-unix/X0')
)
 then
 local xephyrconn = unix.stream.dial(xephyrconnep)
 master:send_with_fds(0, {xephyrconn:release()})
 else
 master:use_slave_credentials()
 end
 end
end) end):detach()

This example also shows that Emilua can make use of LD_PRELOAD to perform libc
interposition on existing programs such as xterm.

Another interesting approach that might prove useful to your projects is to use
kcmp in your security policies. This technique would allow you to increase
your policies granularities even further by implementing different subpolicies
for each file descriptor.

These techniques are already probably more than what you need, but I have few
more tricks up in my sleeve to share, so let’s move on.

Sandboxing native plugins

 A common theme in the threat model of sandboxes is to assume that initially
trusted code becomes malicious once compromised. For instance, we might trust
that ffmpeg developers are well-intentioned and didn’t backdoored their
project. However ffmpeg is a complex project and legitimate bugs lurk around
just waiting to be found. Some of these bugs might be exploitable by hackers. In
this case we can import ffmpeg as a library in our executable and only setup the
sandbox right before we call ffmpeg functions on external data.

However how’d we approach the sandboxing steps if we assumed the code to be
compromised from the start? Let’s take Telegram’s tdlib as an example. Suppose
you don’t trust tdlib at all. Under this threat model, even just loading the
library would be a dangerous operation. For such scenario, first we need to
build tdlib under a secure environment (e.g. jails on FreeBSD, namespaces on
Linux). Once we do have the built plugin, we can move to the next challenge.

If we disable ambient authority to sandbox the code, dlopen() will fail to
access the filesystem. To work around this issue, we can dlopen by file
descriptors instead. On FreeBSD, we can use fdlopen. On Linux, we can pass a
path to /proc/self/fd/ as long as we never close the file descriptor to avoid
path reuse by a different plugin (glibc will deduplicate plugins by
path). That’s not a perfect solution, but it’s a start.

On some previous example, we saw code cache prefilling as an Emilua way to
instruct a policy to avoid filesystem queries. Emilua just follows the same
trend for plugins and exposes native_modules_cache to prefill the native
plugin cache:

 spawn_vm{
 module = 'some_module',
 subprocess = {
 native_modules_cache = {
 'some_plugin'
 } } }

The biggest problem with plugins is that they might depend on not yet loaded
dynamic libraries and dlopen would fail to load them. We can try to use the
workaround for libc-service that we saw in the previous sect